- Home
- Math & Scientific
- Binary to Hexadecimal Calculator
Binary to Hexadecimal Calculator
Binary to Hexadecimal Calculator
Convert between binary (base-2) and hexadecimal (base-16) number systems instantly. This calculator is essential for programmers, computer science students, and anyone working with digital systems.
Understanding Number Systems
Binary (Base-2)
- Uses only two digits: 0 and 1
- Each position represents a power of 2
- Common in digital electronics and computing
- Example: 1010 (binary) = 10 (decimal)
Hexadecimal (Base-16)
- Uses sixteen digits: 0-9 and A-F
- A=10, B=11, C=12, D=13, E=14, F=15
- Compact representation of binary data
- Example: A5 (hex) = 165 (decimal)
Binary-Hex Conversion Table
Hex | Binary | Hex | Binary |
---|---|---|---|
0 | 0000 | 8 | 1000 |
1 | 0001 | 9 | 1001 |
2 | 0010 | A | 1010 |
3 | 0011 | B | 1011 |
4 | 0100 | C | 1100 |
5 | 0101 | D | 1101 |
6 | 0110 | E | 1110 |
7 | 0111 | F | 1111 |
How to Convert Binary to Hexadecimal
- Group Binary Digits
- Start from the right
- Create groups of 4 bits
- Add leading zeros if needed
- Convert Each Group
- Use the conversion table
- Replace each 4-bit group with its hex digit
- Combine Results
- Write hex digits from left to right
- Remove leading zeros
Example: 1010 1111 → AF (hex)
How to Convert Hexadecimal to Binary
- Convert Each Hex Digit
- Use the conversion table
- Replace each hex digit with 4 bits
- Combine Results
- Write all bits together
- Remove leading zeros if desired
Example: C5 → 1100 0101 (binary)
Common Applications
-
Computer Programming
- Memory addresses
- Color codes (e.g., #FF0000 for red)
- Binary file representations
-
Digital Electronics
- Microcontroller programming
- Digital signal processing
- Hardware debugging
-
Network Engineering
- MAC addresses
- IPv6 addresses
- Network masks
Tips for Accurate Conversion
- Binary Numbers
- Verify only 0s and 1s are used
- Group into sets of 4 bits
- Add leading zeros when needed
- Hexadecimal Numbers
- Use only valid hex digits (0-9, A-F)
- Case doesn’t matter (a-f or A-F)
- Remove leading zeros
Technical Notes
- Maximum input length: 16 bits
- Supports both uppercase and lowercase hex
- Automatic validation of input format
- Real-time conversion updates
Frequently Asked Questions
Q: Why use hexadecimal instead of decimal? A: Hexadecimal provides a more compact representation of binary data, where each hex digit represents exactly 4 bits.
Q: Are leading zeros important? A: Leading zeros don’t change the value but can be important for formatting or when a specific number of digits is required.
Q: Is hex case-sensitive? A: No, both uppercase (A-F) and lowercase (a-f) are valid and represent the same values.
Binary to Hexadecimal Calculator updated at